VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. (EEE: CBCS) M-Semester Main Examinations, December-2018

Electrical Circuits-I

Time: $\mathbf{3}$ hours
Max. Marks: 60
Note: Answer ALL questions in Part-A and any FIVE from Part-B

Q. No	Stem of the Question
Part- $A(10 \times 2=20$ Marks $)$	
1. Write down the voltage and current relationship in pas	
2. State and explain Kirchhoff's laws.	
3. Which elements are known as linear \& non linear elem	
4. The applied voltage to a series circuit is $\mathrm{v}(\mathrm{t})=50 \mathrm{Sin}(200$	
resultant current through the circuit is $\mathrm{i}(\mathrm{t})=8 \sin (2000$	
elements.	
5. State and explain Tellegen's theorem.	
6. Find Norton's equivalent circuit for given netw	

7. What is the power factor at half power points and describe it.
8. Define quality factor in series resonance.
9. Define coefficient of coupling.
10. Derive the relationship between line and phase voltages in a star connected 3 -phase circuit.

Part-B $(5 \times 8=40$ Marks $)$
11. a) Classify the Dependent $\&$ independent energy sources and explain briefly with diagrams.
b) Find the power delivered by the 2 A current source for a given network using nodal analysis.

12. a) How would you explain RMS and Average values of an alternating quantity?
b) A coil having a resistance of 10 ohms and an inductance of 0.2 H is connected in series with a $100 \mu \mathrm{~F}$ capacitor across a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Calculate
i) The active and reactive components of the current
ii) The voltage across the coil. Draw the phasor diagram.
13. a) State and explain the superposition theorem and its limitations.
b) Find the Thevenin's equivalent circuit of the circuit shown in below Figure. As seen from i) terminals $a-b \quad$ ii) terminals $c-d$

14. a) Define resonance and Explain graphical representation of series resonance.
b) An RLC series circuit hits a resonant frequency of $10^{6} \mathrm{rad} / \mathrm{sec}$ and a band width of $1000 \mathrm{rad} / \mathrm{sec}$. At resonance an applied voltage of 0.05 V causes a current of 5 mA . Find i) The values of R,L and C ii)Voltage across L\&C iii) frequencies at which current will reduce by a factor of 0.707 .
15. a) Find the voltage across the 10Ω resistor for the given network.

b) A $3 \Phi, 4$ wire, 380 V supply is connected to an unbalanced load having phase impedances of $Z_{\mathrm{R}}=(4+\mathrm{j} 3) \Omega, \mathrm{Z}_{\mathrm{y}}=(4-\mathrm{j} 3) \Omega$ and $\mathrm{Z}_{\mathrm{B}}=2 \Omega$. Impedance of the neutral wire is $Z_{n}=(1+j 2) \Omega$. Find the phase currents and voltages of the load.
16. a) Derive the expression for star connected resistances in terms of delta connected system.
b) In a circuit $v=100 \angle 30^{\circ}, I=20 \angle-75^{\circ}$, obtain complex power, power factor, active power and reactive power. Draw power triangle.
17. Answer any two of the following:
a) Maximum power transfer theorem
b) Admittance Locus diagram of series R-L circuit with R variable.
c) Millimans method of 3-phase unbalanced load analysis.

4	2	3	1
4	3	3	1,3

4	2	4	1
4	5	4	1,2

4251,2

4	2	3	1
4	2	4	1,2

$\begin{array}{llll}4 & 2 & 5 & 1\end{array}$

M: Marks; L: Bloom's Taxonomy Level; CO: Course Outcome; PO: Programme Outcome

S. No.	Criteria for questions	Percentage
1	Fundamental knowledge (Level-1 \& 2)	65
2	Knowledge on application and analysis (Level-3 \& 4)	25
3	*Critical thinking and ability to design (Level-5 \& 6) (*wherever applicable)	10

